Integral of Measurable Function

نویسندگان

  • Noboru Endou
  • Yasunari Shidama
چکیده

One can prove the following propositions: (1) For all extended real numbers x, y holds |x− y| = |y − x|. (2) For all extended real numbers x, y holds y − x ≤ |x− y|. (3) Let x, y be extended real numbers and e be a real number. Suppose |x − y| < e and x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞. Then x 6= +∞ and x 6= −∞ and y 6= +∞ and y 6= −∞. (4) For all extended real numbers x, y such that for every real number e such that 0 < e holds x < y + R(e) holds x ≤ y. (5) For all extended real numbers x, y, t such that t 6= −∞ and t 6= +∞ and x < y holds x+ t < y + t. (6) For all extended real numbers x, y, t such that t 6= −∞ and t 6= +∞ and x < y holds x− t < y − t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY GOULD INTEGRABILITY ON ATOMS

In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...

متن کامل

Extension on the Fuzzy Integral Based on ⊕-decomposable Measure

We extend the concept of fuzzy integral based on ⊕-decomposable measure from nonnegative fuzzy measurable function to extended real-valued fuzzy measurable function. Further investigations of fuzzy integrals based on pseudo-additive decomposable measure are carried out. Meanwhile, the space (S(μ),σ(·,·)) of all fuzzy measurable function will be proved to be a pseudo-metric space. Finally, as an...

متن کامل

Notes for “Wavelets and Computation”

• The exterior measure of any set A ⊂ R is μ∗(A) = inf E⊂A μ(E) where the infimum is taken over all elementary sets. • A is Lebesgue measurable if for all > 0 there exists an open set O ⊃ A such that μ∗(O \A) ≤ . • The (Lebesgue) measure of a measurable set is μ(A) = μ∗(A). A function f is measurable if the sets {t | f(t) ≤ a} are measurable for all a ∈ R. Definition 2 (Lebesgue integral) • For...

متن کامل

Integral of Complex-Valued Measurable Function

In this article, we formalized the notion of the integral of a complex-valued function considered as a sum of its real and imaginary parts. Then we defined the measurability and integrability in this context, and proved the linearity and several other basic properties of complex-valued measurable functions. The set of properties showed in this paper is based on [15], where the case of real-valu...

متن کامل

Scalar and Vector Fuzzy Integrals for Vector Multifunctions

We present some integrals for vector measurable multifunctions with respect to a fuzzy measure obtained by scalarization. Calculus rules, relationships between these integrals and the vector integrals defined until now and some convergence results are presented. Key–words: fuzzy measure, fuzzy integral, measurable multifunction.

متن کامل

On Properties of the Choquet Integral of Interval-Valued Functions

Based on the concept of an interval-valued function which is motivated by the goal to represent an uncertain function, we define the Choquet integral with respect to a fuzzy measure of intervalvalued functions. We also discuss convergence in the C mean and convergence in a fuzzy measure of sequences of measurable interval-valued functions. In particular, we investigate the convergence theorem f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007